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chain packing of low density, giving rise to the high permeability. In the present studies
a series of polyacetylene derivatives have been modelled by quantum mechanics, molecular
mechanics, and molecular dynamics techniques to examine the barriers to rotation about
backbone bonds and thus the ability to change conformation.



molecular dynamics calculations were performed using
COMPUTER SIMULATION OF SUBSTITUTED the QUANTA and CHARMm software from the Polygon

POLYACETYLENES Corporation on a Stellar GS100O computer in the
Modelling Laboratory.

S. B. Clough, X. F. Sun% and S. Tripathy
Polymer Science Program I Results and Discussion
Department of Chemistry

University of Lowell, Lowell, MA 01854 1 Initially, CNDO/2 calculations were planned to
calculate the potential energy as a function of torsion
angle about a single C-C bond in the backbone, keeping

Introduction: all other bond lengths and angles fixed. Reasonable
results are obtained for trans polyacetylene (PA) as

A wide variety of substituted polyacetylenes has shown in Figure 1. In this figure, 00 represents the
been synthesized In recent years [I. Polyacetylene * trans conformation about the single bond. For
Itself is a semiconductor with a values as high as 10* 4 , substituted polyacetylenes, however, unreasonably high
Scm "1 for oriented films (21 when doped, polyacetylene barriers were obtained since the calculations held the
Is a conductor. The conjugated chain has a planar remainder of the molecule rigid, as shown in Figure 1
conformation 13]. The substituted polymers are I for polypropyne (PP). Thus subsequent studies were
primarily Insulators, however; the interaction of large I made by minimizing energy at each step In the phi scan
s substituted groups forces the chain In a non-planar I (molecular mechanics methods), and by obtaining
conformation. 1 average structures and fluctuations (molecular. Poly(1-(trimethylsilyi)-I-propyne), (PTMSP), has dynamics).
been found to be of particular interest, due to its large I Some results of dynamics simulations at 300K made
permeability to gases. The 02 permeability of PTMSP, I on 24 repeat units of the cis structure of the various
for example, is an order of magnitude higher than that polyacetylenes are shown in Table I.
of polydimethylsiloxane (1, 4). PTMSP is an amorphous I
polymer highly soluble in common organic solvents, and Table I. Rotation about backbone bonds in average
is oxidatively stable (5, 61. Values of Mw higher than structures from molecular dynamics simulation at
106 have been achieved [1). 300K (cis structures).

Viscosity studies indicate PTMSP has an expanded
structure. It is predicted that a given chain's twisted 1a (C-C) o (C-C)
conformation will be niairtained evear In solution: the
barriers for rotation about backbone bonds should IPolyacetylene -1800 .0
prevent a change in conformation. Thus the polymer I Poly(2-butyne) 28* from 1800 20 from 00

molecules may be rather rigid, though not rod like. I Poly(tert-butyl 120-145 many close to 0
Presumably this rigid, twisted conformation leads to a
chain packing of low density, giving rise to the high I acetylene) but several In the

permeability. I range 140-1550
In the present studies a series of polyacetylene

derivatives have been modelled by quantum mechanics, I As the substituted groups Increase in size.
molecular mechanics, and molecular dynamics increasingly large deviations from the planar structure
techniques to examine the barriers to rotation about are found. For the poly(tert-butyl acetylene) (PTBA)
backbone bonds and thus the ability to change case, the calculations predict that the large side group!
conformation. , force some of the double bond to rotate to large angles

J form the cis structure.'I

alculations- Energy minimization studies for rotation about
single bonds in PTBA have barrier heights on the order

Energy-minimized structures were obtained on 30-40 kcal/mol, Thus the structures can not rapidly
several repeat units of the polymers in Table I using change conformation at 300K, and are rigid, though not
the MNDO approximation (7] ( In the ChemLab II I rod-like. The end-to-end distance for 24 repeat units o
software package on a MicroVAX-II in the Chemistry PTMSP Is shown In Figure 2 for a portion of a dynamics
Department's Molecular Modelling Laboratory). Results simulation at 300K. Fluctuation about torsional angles
for polyncetylene have been previously reported [8]. j allow only small fluctuations In the end-to-end
Barriers to rotation about a C-C single bond were distance. No evidence for rotation over a barrier to a
calculated with CNDO/2 [9]. Molecular mechanics and new conformation has been found for PTMSP atSreasonable temperatures.

*Permanent adress: Deparlment of Polymer Science, Beijing

Insliltule of Chemical Technolegy, Beijing, PRC
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